PHENYLCOPPER COMPLEXES WITH TERTIARY PHOSPHINES AND WITH TRIPHENYLBORANE

G. COSTA, A. CAMUS, N. MARSICH AND L. GATTI Istituto di Chimica, Università degli Studi di Trieste (Italy) (Received August 8th, 1966)

In a previous paper¹ the reactions involving a formation of phenylcopper (CuPh) were described, and pure CuPh as well as some complexes with LiPh and $Mg(Ph)_2$ were reported. The present work deals with CuPh complexes with PPh_3 , PBu₃ and BPh₃ and was undertaken with the aim of studying the possibility of stabilization and/or solubilization of organocopper compounds by complex formation.

Attempts to isolate complexes with AlPh₃, NPh₃, AsPh₃, SbPh₃ and BiPh₃ were unsuccessful.

RESULTS

Reactions of phenylcopper with triphenylphosphine and tributylphosphine

PPh₃ reacts with solid CuPh suspended in tetrahydrofurane, toluene, benzene or diethyl ether to give yellow soluble products. With CuPh/PPh₃ ratios of 0.33–3, the crude crystalline product is a mixture of different complexes. Its composition was found to vary from $(CuPh)_{1,8}PPh_3$ to $(CuPh)_{3,3}Ph_3$. With a CuPh/PPh₃ ratio of 5, unreacted CuPh is recovered, while the ratio in the solution approaches 3.

Under appropriate conditions, by a single crystallization from toluene almost pure crystalline complexes $(CuPh)_2PPh_3$ and $(CuPh)_3PPh_3$ were obtained. Repeated crystallizations lead to compounds with higher copper content and deeper colour.

Only partially phenylated derivatives were obtained from $CuBrPPh_3$ by reaction with LiPh, while $CuBr(PPh_3)_3$ failed to react.

Using PBu₃ as complexing agent in ethyl ether or toluene, with Cu/PPh₃ ratios from 0.33 to 1, no crystallizable products are obtained, owing to the high solubility. With an excess of CuPh in n-pentane, a crystalline solid can be separated. The CuPh/PPh₃ ratio in the solution approaches 2, and the CuPh excess is recovered almost pure as insoluble residue.

All the above complexes are diamagnetic and monomers in toluene at concentrations from 1 to 3% w/w. The crystalline products are stable for weeks under nitrogen at room temperature.

Hydrolysis of the phenyl groups bonded to copper occurs easily in moist solvents. In n-heptane at 0° a Cu/Ph ratio 1 is found, while at higher temperature some biphenyl is formed, as in the case of CuPh. The ligand is recovered after hydrolysis mainly as such or as phosphine oxide: the latter is the main product in the presence of air.

الأحادي والمعقود والمعجون ويحتج والمناجرية المراجع

and a start of the start of the

Reaction of phenylcopper with triphenylborane

An equivalent amount or excess of BPh_3 in diethyl ether reacts with CuPh to give a grayish microcrystalline powder consistent with the formula CuBPh₄. The product decomposes slowly in the air. It is easily hydrolyzed by moist organic solvents even at 0°, giving mainly benzene, in an amount accounting for the phenyl groups of both BPh_3 and CuPh. CuBPh₄ is very soluble in pyridine, from which the yellowish complex CuBPh₄·4 Py is precipitated by water.

TABLE 1

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1585 vw 1470 s 1417 vs 1384 sh 1330 w 1300 s sh sh 1189 m 1162 m	1584 ms 1562 sh 1476 vs 1470 m 1434 vs 1417 ms 1384 sh 1320 sh 1300 1274 s 1186 sh 1162 m 1095 s	1582 m 1577 sh 1482 s 1435 vs 1380 sh 1330 w 1308 m 1283 w 1184 1160
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1585 vw 1470 s 1417 vs 1384 sh 1330 w 1300 s sh sh 1189 m 1162 m	1584 ms 1562 sh 1476 vs 1470 m 1434 vs 1417 ms 1384 sh 1320 sh 1300 1274 s 1186 sh 1162 m 1095 s	1582 m 1577 sh 1482 s 1435 vs 1380 sh 1330 w 1308 m 1283 w 1184 1160 1096 vs
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1470 s 1417 vs 1384 sh 1330 w 1300 s sh sh 1189 m 1162 m	1562 sh 1476 vs 1470 m 1434 vs 1417 ms 1384 sh 1320 sh 1300 1274 s 1186 sh 1162 m 1095 s	1577 sh 1482 s 1435 vs 1380 sh 1330 w 1308 m 1283 w 1184 1160 1096 vs
$\omega_{5} \begin{cases} 1480 \text{ vs} \\ 1477 \\ 1435 \text{ vs} \\ 1443 \\ 1379 \\ 1351 \\ 1320 \\ 1320 \\ 1326 \\ 1320 \\ 1326 \\ 1320 \\ 1326 \\ 1326 \\ 1320 \\ 1326 \\ 1326 \\ 1326 \\ 1326 \\ 1326 \\ 1328 \\ 1320 \\ 1326 \\ 1328 \\ 1328 \\ 108 \\ 1283 \\ 108 \\ 1283 \\ 108 \\ 1283 \\ 108 \\ 1283 \\ 108 \\ 1283 \\ 108 \\ 1283 \\ 108 \\ 1283 \\ 108 \\ 1283 \\ 108 \\ 1283 \\ 108 \\ 1283 \\ 108 \\ 1283 \\ 108 \\ 1283 \\ 1090 \\ 128 \\ 1090 \\ 1000 $	1470 s 1417 vs 1384 sh 1330 w 1300 s sh sh 1189 m 1162 m	1476 vs 1470 m 1434 vs 1417 ms 1384 sh 1320 sh 1300 1274 s 1186 sh 1162 m 1095 s	1482 s 1435 vs 1380 sh 1330 w 1308 m 1283 w 1184 1160 1096 vs
$\omega_{5} \qquad \begin{cases} 1477 \\ 1443 \\ 1443 \\ 1379 \\ 1351 \\ 1351 \\ 1320 \\ 1320 \\ 1326 \\ 1320 \\ 1326 \\ 1320 \\ 1326 \\ 1326 \\ 1326 \\ 1326 \\ 1326 \\ 1328 \\ 1328 \\ 1328 \\ 1328 \\ 1328 \\ 1328 \\ 1328 \\ 1328 \\ 1283 \\ 1088 \\ 1283 \\ 1088 \\ 1283$	1470 s 1417 vs 1384 sh 1330 w 1300 s sh sh 1189 m 1162 m	1470 m 1434 vs 1417 ms 1384 sh 1320 sh 1300 1274 s 1186 sh 1162 m 1095 s	1435 vs 1380 sh 1330 w 1308 m 1283 w 1184 1160 1096 vs
$\omega_{19} \begin{cases} 1443 \\ 1379 \\ 1351 \\ sh \\ 1320 \\ 1299 \\ 1299 \\ 1308 \\ 1283 \\ mw \\ 1266 \\ 1272 \\ mw \\ 1283 \\ mw \\ 1090 \\ vs \\ we \\ we \\ mw \\ mw \\ mw \\ mw \\ mw \\ mw$	1470 s 1417 vs 1384 sh 1330 w 1300 s sh sh 1189 m 1162 m	1470 m 1434 vs 1417 ms 1384 sh 1320 sh 1300 1274 s 1186 sh 1162 m 1095 s	1435 vs 1380 sh 1330 w 1308 m 1283 w 1184 1160 1096 vs
$\omega_{19} \begin{cases} 1443 \\ 1379 \\ 1351 \\ sh \\ 1351 \\ sh \\ 1320 \\ 1299 \\ 1308 \\ 1283 \\ mw \\ 1090 \\ vs \\ we \\ w$	1417 vs 1384 sh 1330 w 1300 s sh sh 1189 m 1162 m	1434 vs 1417 ms 1384 sh 1320 sh 1300 1274 s 1186 sh 1162 m 1095 s	1435 vs 1380 sh 1330 w 1308 m 1283 w 1184 1160 1096 vs
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1417 vs 1384 sh 1330 w 1300 s sh sh 1189 m 1162 m	1417 ms 1384 sh 1320 sh 1300 1274 s 1186 sh 1162 m 1095 s	1380 sh 1330 w 1308 m 1283 w 1184 1160
$\omega_{20} \qquad \begin{array}{c} 1379 & \text{sh} \\ 1351 & \text{sh} \\ 1320 & 1326 \text{ w} \\ 1299 & 1308 \text{ m} \\ 1283 \text{ mw} \\ 1266 & 1272 \text{ mw} \\ 1283 \text{ mw} \\ 1266 & 1272 \text{ mw} \\ 1181 \text{ m} \\ 1174 \\ \omega_{21} & 1159 & 1159 \text{ m} \\ \omega_{22} \text{ and} & 1090 \text{ vs} \\ \omega_{6} (\omega_{x}) & \begin{cases} 1068 & 1070 \text{ s} \\ 1068 & 1070 \text{ s} \\ \end{cases} \\ \omega_{8} & 1019 & 1026 \text{ s} \\ \omega_{9} & 999 & 997 \\ \omega_{25} & 987 \\ \omega_{12} & 962 \\ \end{array}$	1417 vs 1384 sh 1330 w 1300 s sh sh 1189 m 1162 m	1417 ms 1384 sh 1320 sh 1300 1274 s 1186 sh 1162 m 1095 s	1380 sh 1330 w 1308 m 1283 w 1184 1160
$\omega_{20} \qquad \begin{array}{ccccc} & 1379 & \text{sh} \\ & 1351 & \text{sh} \\ & 1320 & 1326 w \\ & 1299 & 1308 m \\ & 1283 mw \\ & 1283 mw \\ & 1283 mw \\ & 1266 & 1272 mw \\ & 1181 m \\ & 1174 \\ & \omega_{21} & 1159 & 1159 m \\ & \omega_{22} and & 1090 vs \\ & \omega_{6} (\omega_{2}) & 1068 & 1070 s \\ & \omega_{8} & 1019 & 1026 s \\ & \omega_{9} & 999 & 997 \\ & \omega_{25} & 987 \\ & \omega_{12} & 962 \\ \end{array}$	1384 sh 1330 w 1300 s sh sh 1189 m 1162 m	1384 sh 1320 sh 1300 1274 s 1186 sh 1162 m 1095 s	1380 sh 1330 w 1308 m 1283 w 1184 1160 1096 ys
$\omega_{20} \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$	1330 w 1300 s sh sh 1189 m 1162 m	1320 sh 1300 1274 s 1186 sh 1162 m 1095 s	1330 w 1308 m 1283 w 1184 1160
$\omega_{20} \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$	1330 w 1300 s sh sh 1189 m 1162 m	1320 sh 1300 1274 s 1186 sh 1162 m 1095 s	1330 w 1308 m 1283 w 1184 1160
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1300 s sh sh 1189 m 1162 m	1300 1274 s 1186 sh 1162 m 1095 s	1308 m 1283 w 1184 1160
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	sh sh 1189 m 1162 m	1274 s 1186 sh 1162 m 1095 s	1283 w 1184 1160
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	sh 1189 m 1162 m	1274 s 1186 sh 1162 m 1095 s	1184 1160 1096 ys
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1189 m 1162 m	1186 sh 1162 m 1095 s	1184 1160 1096 vs
$ \begin{array}{c} \omega_{7} & \begin{cases} 1174 & \\ \omega_{21} & \\ \omega_{22} & \text{and} \\ \omega_{6} & (\omega_{2}) & \end{cases} & \begin{cases} 1159 & 1159 & \text{m} \\ 1090 & \text{vs} \\ 1068 & 1070 & \text{s} \\ \end{cases} \\ \omega_{8} & 1019 & 1026 & \text{s} \\ \omega_{9} & 999 & 997 \\ \omega_{25} & 987 & \\ \omega_{12} & 962 & \end{cases} $	1162 m	1162 m 1095 s	1160 1096 vs
$ \begin{array}{c} \omega_{21} \\ \omega_{22} \text{ and} \\ \omega_{6} (\omega_{2}) \end{array} \begin{cases} 1159 & 1159 \text{ m} \\ 1090 \text{ vs} \\ 1068 & 1070 \text{ s} \end{cases} \\ \\ \omega_{8} \\ \omega_{8} \\ 1019 \\ 1026 \text{ s} \\ \omega_{9} \\ \omega_{25} \\ \omega_{12} \\ 062 \\ 015 \\ 01$	1162 m	1162 m 1095 s	1160 1096 vs
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1095 s	1006 vs
$ \begin{array}{c} \omega_{6} (\omega_{x}) \\ \omega_{8} \\ \omega_{8} \\ \omega_{9} \\ \omega_{25} \\ \omega_{12} \\ \omega_{12} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$			1020 83
$\omega_{8} \qquad 1019 \qquad 1026 \text{ s}$ $\omega_{9} \qquad 999 \qquad 997$ $\omega_{25} \qquad 987$ $\omega_{12} \qquad 962 \qquad 017$		1072 w	1070 s
$\omega_{8} 1019 1026 s$ $\omega_{9} 999 997 \omega_{25} 987 \omega_{12} 962 025 0$	1057 s		10.00
$ \omega_8 $ 1019 1026 s $ \omega_9 $ 999 997 $ \omega_{25} $ 987 $ \omega_{12} $ 962	1045 s	1047 w	
		1025 m	1030 ms
	1017 s	1009 sh	1000
ω_{25} 987 ω_{12} 962	990 s	998 m	998 m
ω_{12} 962		989 sh	
-12			
917 mw		922 w	917
ω ₂₆ 903			
910 mw	909 m	909 w	910
ω ₁₂ 831 851 ms	861 m	845 m	850 m
(753)			754
() 735 747 VS		746 broad vs	745 vs
743		110 DIQUE 13	010 10
(723	721	
w and (683 607	696	693	694
m_{28} (m) 675 692	670	325	707

INFRARED SPECTRA OF TRIPHENYLPHOSPHINE COMPLEXES^a

^a Frequencies in cm⁻¹; v = very; s = strong; m = medium; w = weak; sh = shoulder.

J. Organometal. Chem., 8 (1967) 339-346

Assignments	AgBPh ₄	CuBPh ₄	TlBPh ₄	NaBPh ₄	NH ₄ BPh ₄	BPh ₃
		1600				
ω	1575 ms	1575 ms	1580 ms	1580 ms	1580 ms	1587 vs
ω ₁₈	1564 sh			1557 sh	• · · · ·	1564 sh
ω ₅	1478 vs	1476 vs	1478 vs	1478 vs	1480 vs	
ω19	1424 s	1427 s	1425 s	1430 s	1430 s	1434 vs
		1348 mw		1393 vs	1393 vs	1350 ms
$\omega_{6}(\omega_{x})$	1315 m	1313 mw	1310 mw	1311 mw	1310 mw	1314 s
and ω_{20}	1270 sh	1272 s	1273 m	1260 s	1270 s	1283 vs
	1262 s	1260 sh				1263 sh
						1240 vs
ωŢ	1180	1180 m	1187 vs	1190 ms	1189 vs	1192 w
ω21	1158 ms	1159 ms				
••	1142 s	1142 s	1159 vs	1156 s	1157 vs	
	1128 sh	1130 sh	1133 w	1131 w	1123 w	1131 w
ω22	1065 ms	1065 ms	1069 m	1070 m	1070 m	1074 m
ω _s	1028 ms	1030 ms	1028 s	1031 ms	1026 s	1027 ms
ω	996 m	995 m	996 mw	994 m	996 m	998 ms
-						990 sh
ω25	978 m	974 m	989 mw	979 w	992 m	979 m
	921 s	917 ms	917 ms	923 w	919 s	938 ms
	863 ms	866 ms	866 ms	869 m	865 m	898 ms
	850 ms	849 ms	852 vs	853 vs	852 vs	884 vs
$\omega_{10} (\omega_x)$	-					775 s
	743 vs	739 vs	747 vs	747 vs	747 vs	745 vs
ω27	-{		739 vs	739 sh	739 vs	
	732 vs	729 vs				
$\omega_{10} (\omega_x)$	715 vs	715 vs	713	723 vs	715	
and ω_{28}			>vs		}vs	689 vs,vb
		-	707)		710	

TABLE 2

^a Frequencies in cm^{-1} ; v = very; s = strong; m = medium; w = weak; sh = shoulder, br = broad.

Infrared spectra

Apart from some intensity variations and small shifts of a few phenyl absorption bands, the IR spectra of (CuPh)₂PPh₃ and (CuPh)₃PPh₃ are very close to the superimposed spectra of CuPh and PPh₃ in the region examined. The absorption frequencies of PPh₃ in the complexes are almost exactly as in CuBrPPh₃.

The spectrum of CuBPh₄, on the contrary, is markedly different from that of BPh₃, mainly in the 1390-1100 and 680-800 cm⁻¹ regions, where substituent sensitive frequencies ω_6 and ω_{10} are found. In the same regions the spectrum of $CuBPh_4$ and AgBPh_4 can be distinguished from that of the other tetraphenylboron compounds, showing a higher number of bands in the 1270-1120 cm^{-1} region and a different pattern for the splitting of the ω_{27} and ω_{28} bands (750–715 cm⁻¹).

The IR spectra, frequencies of adsorption bands and assignments of starting compounds and related complexes are listed in the Fig. 1, 2 and Tables 1, 2.

The bands about 1095 and 1070 cm⁻¹ in the (CuPh), PPh₃ and CuBrPPh₃ complexes can be assigned to the in-plane C-H bending and to the substituent sensitive $\omega_6(\omega_r)$ mode of the PPh₃ ligand. The displacement towards higher frequencies as compared with free PPh₃ is in agreement with the findings of Deacon and Green⁴ on complexes of the type (PPh₃)₂MgX₂ (M = Zn, Cd, Hg; X = Cl, Br, I). A similar displacement is observed also for the second ω_x mode (ω_{10}).

In BPh₃, either the 1283 and/or 1240 cm⁻¹ band could be assigned to the $\omega_6(\omega_x)$ mode. In compounds containing the residue Ph₂B, only one strong absorption was found^{5,6} between 1280 and 1250 cm⁻¹ while in the PhBF₂ it is found⁷ at 1292 cm⁻¹. In CuBPh₄ and MBPh₄ (M = Na⁺, Tl⁺, NH₄⁺), the corresponding assignment can be confidently made for the band at 1273–1260 cm⁻¹.

The very strong absorptions in the range 723–745 cm⁻¹ are safely assigned in all examined compounds to the out-of-plane C-H deformation γ (C-H) (ω_{27}). In CuPh (723 cm⁻¹) and BPh₃ (745 cm⁻¹), the frequency is some 10 cm⁻¹ lower than expected from the linear plot frequency-reduced mass given by Margoshes and Fassel⁸.

J. Organometal. Chem., 8 (1967) 339-346

DISCUSSION

Phenylcopper/tertiary phosphine complexes

The results of the present work, showing that only PPh₃ out of the triphenyl derivatives of group VB elements forms isolable complexes with PhCu, are in keeping

Fig. 2. Infrared spectra of tetraphenylboron compounds.

with the relative coordinating affinities (N < P > As > Sb > Bi) of group VB ligand atoms towards alkynylcopper and organogold compounds⁹⁻¹².

J. Organometal. Chem., 8 (1967) 339-346

The fact that PhCu can be moderately stabilized and markedly solubilized by complex formation with PPh₃ or PBu₃ is in contrast with the behaviour of methylcopper, which forms a highly unstable complex with PPh₃². On the other hand these complexes are easily hydrolyzed and oxidized; in contrast to AuPhPPh₃¹¹.

As for the stoicheiometry, the tendency to coordinate more than one CuPh to one PPh₃ is in contrast with the formulae of the $(CuX)_n(PPh_3)_m$ complexes $(n/m = 1, \frac{1}{3}, \frac{2}{3}; X = Cl, Br, I)^{13}$ and of the CuCH₃(PPh₃)₃ complex².

From the IR spectra, small interactions between the phosphine ligand and CuPh and minor effects on the Cu-C bond can be assumed to occur in the $(CuPh)_n$. PPh₃ complexes.

Phenylcopper, insoluble in all solvents with which it does not react, can be possibly regarded as a coordination polymer (on the basis of interaction of filled metal d orbitals with antibonding π orbitals of the phenyl group)¹⁴. Tertiary phosphines should reduce the polymer to lower aggregates by competition with phenyl groups as ligands. A similar view was formerly proposed for the ethynylcopper compounds, which are also thought to be coordination polymers¹⁰.

Tetraphenylboroncopper

An impure sample of $Cu^{I}BPh_{4}$ was previously prepared by a very slow reaction between $CuBr_{2}$ and $LiBPh_{4}^{15}$. Better results were reported by careful acidification of $CuBPh_{4} \cdot 4$ Py obtained from the reaction of $KBPh_{4}$ with the copper derivative of acetoacetic ester in pyridine¹⁶, but the $CuBPh_{4}$ we prepared by direct addition of CuPh to BPh_{3} is better characterized and more stable.

The differences in the spectra of triphenylborane and tetraphenylboron derivatives clearly reflect a change in the phenyl groups arrangement around the boron atom. With the $MBPh_4$ complexes, the spectra of copper and silver compounds show differences which are greater than expected assuming the same structure as in the other salt-like compounds ("ate" complexes).

In accord with these results are the differences in reactivity between LiBPh₄ and CuBPh₄. The LiPh in the salt-like complex LiBPh₄ has no reactivity towards carbonyl compounds in the salt-like complex LiBPh₄, while CuBPh₄ still reacts with some carbonyl compounds¹⁷. Moreover, all the phenyl groups of CuBPh₄ are hydrolyzable, in contrast with those of LiBPh₄.

EXPERIMENTAL

General procedures, apparatus and reagents

Strictly anhydrous solvents were used. All the reactions and manipulations were carried out in an atmosphere of dry oxygen free nitrogen. Hydrolizable phenyl groups were determined as previously described¹. Molecular weights were determined in toluene at 37° with a Mechrolab Vapor Pressure Osmometer Model 302. IR spectra were registered as KBr pellets with a Perkin Elmer 13 Spectrophotometer. Magnetic measurements were made by the Gouy method at room temperature.

CuPh was freshly prepared from CuBr and LiPh¹. Commercial PPh₃ (purissimum Fluka) and PBu₃ (practicum Fluka) were used. BPh₃ was prepared from thermal decomposition of trimethylammonium tetraphenylborate¹⁵: commercial (practical) BPh₃ did not react satisfactorely with CuPh. NaBPh₄ (Kalignost) was purified by cristallization from acetone/benzene¹⁸. NH_4BPh_4 , $TlBPh_4$ and $AgBPh_4$ were precipitated from Kalignost solution by the correspondent nitrates. The latter was prepared from methanolic solutions¹⁵.

Phenylcopper/phosphine complexes

 $(CuPh)_2PPh_3$. PPh₃ (1.53 g, 5.8 mmole) in toluene (30 ml) was added dropwise at 0° to a stirred suspension of CuPh (0.82 g, 5.8 mmole) in the same solvent (10 ml). A yellow-brown solution was slowly formed. After standing 1 h at room temperature the solution was filtered, concentrated to about 6 ml and cooled at -60° overnight. Some crystals were formed and then a good crystallization occurred at room temperature. The pale-yellow solid separated was filtered, washed with cold toluene and ether and thoroughly dried *in vacuo*. [Found: C, 66.22; H, 5.09; Cu, 23.90; P, 5.59; Ph, 28.00; Ph/Cu, 0.97; mol. wt. (3.3% w/w), 530. C₃₀H₂₅CuP calcd.: C, 66.28; H, 4.64; Cu 23.39; P, 5.70; Ph, 28.37%; Ph/Cu 1.00; mol. wt., 544.]

 $(CuPh)_3PPh_3$. PPh₃ (1.25 g, 4.8 mmole) in toluene (15 ml) was added dropwise at 0° to a stirred suspension of CuPh (1.90 g, 13.5 mmole) in the same solvent (10 ml), the mixture was allowed to warm to room temperature. After about 10 h stirring the solution was brown and the solid yellow. The solid was filtered, quickly washed with toluene and ether and thoroughly dried *in vacuo*. [Found: C, 63.41; H, 4.95; Cu, 28.08; P, 4.42; Ph, 35.13; Ph/Cu, 1.03; mol. wt. (1.23% w/w), 673. C₃₆H₃₀CuP calcd.: C, 63.19; H, 4.42; Cu, 27.86; P, 4.53; Ph, 33.80%; Ph/Cu 1.00; mol. wt. 684.]

 $(CuPh)_2PBu_3$. A solution of Bu_3P (0.9 ml, 3.6 mmole) in diethyl ether (20 ml) was added dropwise at 0° to a stirred suspension of CuPh (1.90 g, 13.5 mmole) in the same solvent (15 ml). The solution became immediately deep yellow, then slowly orange-brown. After 5 h stirring the solid still present was filtered off and washed. CuPh (0.65 g, identified by IR spectrum) was recovered. The solution evaporated left a viscous yellow brown residue, soluble in aliphatic and aromatic hydrocarbons. In the presence of air it slowly decomposes to black.

When the above reaction was conducted in n-pentane, we were able to isolate from the orange solution, by concentration and cooling, a brilliant yellow crystalline compound. In the presence of air it immediately becomes red, and in a few seconds it is transformed in a brown oil. [Found: C, 55.28; H, 7.60; Cu, 27.65; P, 5.94; Ph, 32.32; Ph/Cu, 0.96; mol. wt., (three different runs 2.2–3.6 w/w), 479–521. $C_{24}H_{37}PCu$ calcd.: C, 59.60; H, 7.71; Cu 26.29; P, 6.40; Ph, 31.88%; Ph/Cu, 1.00; mol. wt., 484.]

The high Cu and the low P contents are probably due to the presence of some $(CuPh)_3 \cdot PBu_3$. Analytical results for C and H are low owing to decomposition in the sampling of the product.

 $CuBPh_4$. A clear solution of BPh₃ (1 g, 4.5 mmole) in diethyl ether (40 ml) was added dropwise at 0° to a stirred suspension of CuPh (0.58 g, 4.1 mmole) in the same solvent (15 ml), and the mixture was allowed to warm to room temperature*. Stirring was prolonged for about 10 h, then the white voluminous product was filtered and washed with ether until the excess of BPh₃ was eliminated. The whitish microcrystalline product powder was dried *in vacuo*; 1.2 g, 75% yield; m.p. 110° darkening 135– 137° dec. (Found: C, 75.80; H, 5.55; B, 2.85; Cu, 16.20. C₂₄H₂₀BCu calcd.: C, 75.30; H, 5.27; B, 2.83; Cu, 16.60%.)

^{*} At 0° no reaction was observed even after many days.

 $CuBPh_4 \cdot 4 Py$. The above compound was dissolved in pyridine and the yellowbrown solution was precipitated by water, washed with water and dried *in vacuo*. (Found: C, 74.95; H, 6.18; B, 1.80; Cu, 9.47; N, 7.73. C₄₄BCuN₄ calcd.: C, 75.58; H, 5.77; B, 1.55; Cu, 9.09; N, 8.01%.) IR spectrum was identical with a product obtained according to Nesmeyanov and Coll¹⁶.

ACKNOWLEDGEMENT

We thank the NATO and the Italian National Research Council (C.N.R.) which in part supported this work. To the Microanalytical Laboratory of T.H. of Munich we are indebted for some analyses.

SUMMARY

Reactions of phenylcopper with some representative Lewis bases and acids are described. The complexes $(CuPh)_2PPh_3$, $(CuPh)_3PPh_3$, $(CuPh)_2PBu_3$ are reported. The IR absorption frequencies of the PPh₃ complexes in the 1600–700 cm⁻¹ region are assigned and discussed. Tetraphenylboroncopper is obtained by addition of CuPh to BPh₃. The IR spectrum is assigned and compared with those of other tetraphenylborate compounds.

REFERENCES

- 1 G. COSTA, A. CAMUS, L. GATTI AND N. MARSICH, J. Organometal. Chem., 5 (1966) 568.
- 2 G. COSTA, G. PELLIZER AND F. RUBESSA, J. Inorg. Nucl. Chem., 26 (1964) 961.
- 3 E. W. SCHMID, J. BRANDMUELLER AND G. NONNENMACHER, Z. Elektrochem., 64 (1960) 726.
- 4 G. B. DEACON AND J. H. S. GREEN, Chem. Ind. (London), (1965) 1031.
- 5 L. J. BELLAMY, W. GERRARD, M. F. LAPPERT AND R. L. WILLIAMS, J. Chem. Soc., (1958) 2412.
- 6 C. N. R. RAO, Chemical Application of IR Spectroscopy, Academic Press, New York, 1963, p. 285.
- 7 N. N. GREENWOOD AND J. C. WRIGHT, J. Chem. Soc., (1965) 448.
- 8 M. MARGOSHES AND V. A. FASSEL, Spectrochim. Acta, 7 (1955) 14.
- 9 G. BOOTH, Adv. Inorg. Chem. Radiochem., 6 (1964) 1.
- 10 G. E. COATES AND C. PARKIN, J. Inorg. Nucl. Chem., 22 (1961) 59.
- 11 G. E. COATES AND C. PARKIN, J. Chem. Soc., (1962) 3220.
- 12 G. E. COATES AND C. PARKIN, J. Chem. Soc., (1963) 421.
- 13 G. COSTA, E. REISENHOFER AND L. STEFANI, J. Inorg. Nucl. Chem., 27 (1965) 2581.
- 14 D. BLAKE, G. CALVIN AND G. E. COATES, Proc. Chem. Soc., (1959) 396.
- 15 G. WITTIG AND P. RAFF, Ann. Chem., 573 (1951) 195.
- 16 A. N. NESMEYANOV, V. A. SAZONOVA, G. S. LIBERMAN AND L. I. EMELYANOVA, Bull. Sci. USSR, Div. Chem. Sci., (1955) 41.
- 17 V. A. SAZONOVA AND J. I. NAZAROVA, J. Gen. Chem. USSR, 26 (1956) 3829.
- 18 R. W. KUNZE AND R. M. FUOSS, J. Phys. Chem., 67 (1963) 385.
- J. Organometal. Chem., 8 (1967) 339-346